
HIGHLY EFFICIENT TRANSFER HYDROGENATION OF ALKENES WITH AMMONIA BORANE MEDIATED BY A SIMPLE Ni(II) CATALYST SYSTEM

M. Cassiem Joseph and Andrew J. Swarts

Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa

The transition metal catalysed hydrogenation of unsaturated compounds containing π systems remains an essential reaction in organic chemistry due to the valuable products resulting from it [1a]. These reactions typically use dihydrogen (H₂) and have received particular attention in homogeneous Ni catalysed hydrogenations [1b]. Typical drawbacks include high reaction temperatures, extended reaction times, high catalyst loadings and safety concerns. This resulted in research moving towards transfer hydrogenation (TH) reactions, which is a much safer method for the hydrogenation of unsaturated compounds[2a]. The research efforts of the Swarts Research Group focus on the development of catalyst systems derived from earth-abundant metals. As part of our program, we have reported the TH of N-heteroaromatics and nitriles mediated by readily-available Ni(II)-based pre-catalyst with ammonia borane (AB) as hydrogen source [2b-c]. Extending the scope of our catalyst system, we describe the catalytic transfer hydrogenation of alkenes (aromatic, aliphatic and α,β -unsaturated) to their respective alkane products utilizing an ethylene diamine ligated Ni(II)-catalyst with AB as the source of H2 (Scheme 1). Using only 1 mol% of the pre-catalyst at ambient conditions provided excellent conversions and isolated yields of the respective alkane products, with TON values up to 3960. The chemo-selective hydrogenation of α,β unsaturated esters was also achieved. Mechanistic elucidation revealed that borane activates dihydrogen, leading to the proposal of a two-step process during the transfer hydrogenation of styrene.

Scheme 1: Efficient Ni(II) catalysed TH of alkenes.

^{[1] (}a) J. G. De Vries and C. J. Elsevier, Handbook of homogeneous hydrogenation, Weinheim Wiley-VCH 2007; (b) J. Wen, F. Wang and X. Zhang, *Chem. Soc. Rev.*, 2021, **50**, 3211-3237.

 ^{[2] (}a) D. Wang and D. Astruc, *Chem. Rev.*, 2015, **115**, 6621-6686; (b) V. Vermaak, H. C. M. Vosloo and A. J. Swarts, *Adv. Synth. Catal.*, 2020, **362**, 5788-5793; (c) V. Vermaak, H.C.M. Vosloo and A.J. Swarts, *Mol. Catal.*, 2021, **511**, 111738.