
SPIN CROSSOVER COUPLED WITH AN ELECTRON TRANSFER IN HOFMANN-TYPE COORDINATION POLYMERS

<u>Livia Getzner</u>^a, Damian Paliwoda^a, Laure Vendier^a, Latévi Max Lawson-Daku^b, Gábor Molnár^a, Saioa Cobo^{a,c} and Azzedine Bousseksou^a

^a LCC, CNRS and Université de Toulouse, UPS, INP, Toulouse, France
^b Faculté des Sciences – Université de Genève, CH-1211 Genève 4, Suisse, Switzerland
^c Univ. Grenoble Alpes, CNRS, DCM, Grenoble 38000, France

Hofmann coordination polymers (CPs) that couple a spin transition [1] with an electron transfer (ET) at room temperature are an innovative strategy towards multifunctional metal organic frameworks (MOFs). Here, we developed 2D planar {Fe(Me-pbpy)₂[M(CN)₄]₂} compounds (M= Pt^{II} or Ni^{II}), where the axial ligand consists of an infinitely π -stacked, redox-active bipyridinium derivative (Me-pbpy) (Fig. 1a, inset). UVvisNIR measurements (Fig. 1a) show that the compounds absorb over a large range, including a strong band around 500 nm that can be attributed to the reduced, radical form of the bipyridinium unit, which is known to be stabilized by a MOF structure [2]. Replacing Fe^{II} by Zn^{II} affords an isostructural MOF (Fig. 1a), where the band around 500 nm attributed to the electron transfer (ET) cannot be detected, indicating that the interaction between Fe^{II} and the redox-active Me-pbpy unit is crucial. The magnetic properties of the obtained materials show a gradual spin crossover (SCO) between 150 and 250 K with a slight double step (Fig. 1b) that could be related to the ET at high temperature, leading to an interesting coupling between SCO and a thermo-induced ET. These observations are further confirmed by DFT calculations for simplified fragments, single crystal XRD studies and Mossbauer spectroscopy.

Figure 1: a) UVvisNIR absorption of $\{Fe(Me-pbpy)_2[M(CN)_4]_2\}$ compounds $(M=Pt^{II} \text{ or } Ni^{II})$ in comparison to the isostructural Zn^{II} MOF. Inset: unit cell and packing scheme of clathrates. **b)** Magnetic properties, evolution of Fe-N distances and torsion angle of Me-pbpy [3] for $\{Fe(Me-pbpy)_2[Pt(CN)_4]_2\}$.

Acknowledgement: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement N° 101019522).

^[1] Molnár, G., Rat, S., Salmon, L., Nicolazzi, W. & Bousseksou, A. Adv. Mater. 30, 1703862 (2018).

^[2] Yu, X.-Q., Sun, C., Liu, B.-W., Wang, M.-S. & Guo, G.-C. Nat. Commun. 11, 1179 (2020). 11, 1179 (2020)

^[3] Zhang, N.-N., Han, Y.-F. & Wang, M.-S. Cryst. Growth Des. 22, 5293-5299 (2022).